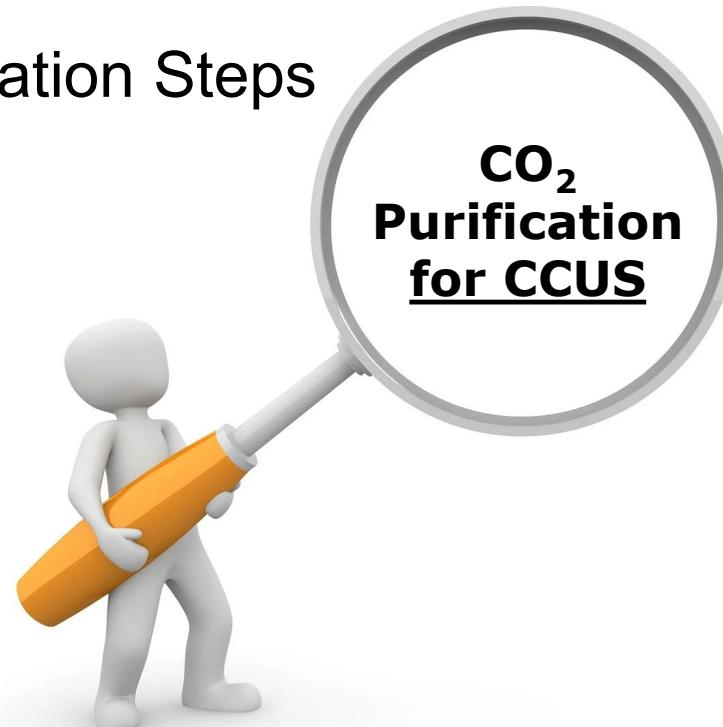


Overview of Proven and Emerging CO₂ Purification Processes for CCUS


**Presented by: Ray McKaskle, P.E.
Trimeric Corporation**

October 23, 2024

www.trimeric.com

Presentation Roadmap

- Sources and Contaminants
- Sequence (Timing) of Purification Steps
- Dehydration
- Distillation
- Catalysts
- SO_2 / Other Sulfur Species
- NO_x
- Others: Aerosols, Salts, Mercury...

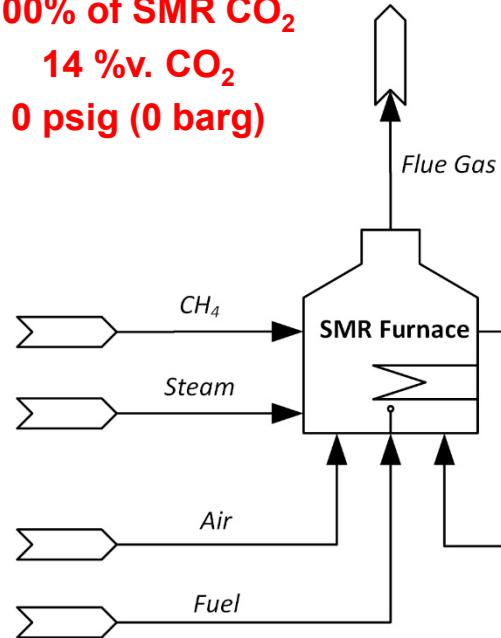
High Purity Sources: Ethanol, Fertilizer, Amine Regen.

- $\geq 95\text{ %v. CO}_2$ (dry) basis
- Saturated with Water Vapor
- \sim Atmospheric Pressure

→ **Compress and Dehydrate**

- High Oxygen Spikes ($\sim 10,000\text{ ppmv}$) Common in Ethanol Plant CO₂

→ **Distillation**


Intermediate Purity Source: Hydrogen Production

SMR Furnace Flue Gas

100% of SMR CO₂

14 %v. CO₂

0 psig (0 barg)

PSA Feed (Shifted Syngas)

55% of SMR CO₂

18 %v. CO₂

350 psig (24 barg)

CO-Shift
Reactor

PSA Feed

PSA Tail Gas

H₂

PSA
(H₂ Purification)

PSA Tail Gas

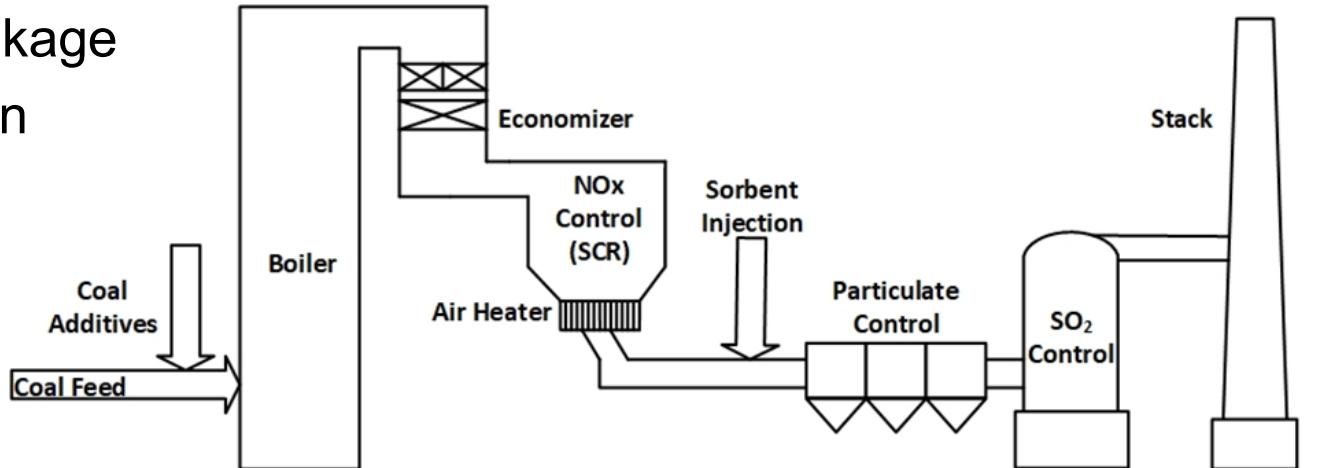
55% of SMR CO₂

40 %v. CO₂

5 psig (0.4 barg)

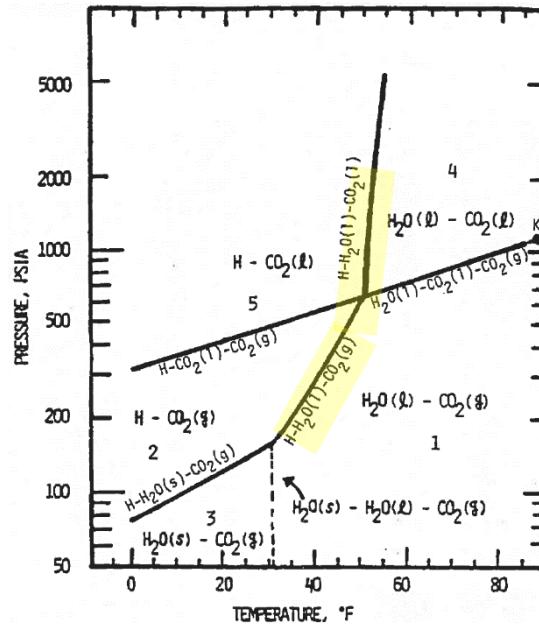
SMR = Steam Methane Reformer

Trimeric Corporation


Lower Purity Sources: Flue Gas

- ~Atmospheric Pressure, Water Saturated
- Too Hot for Capture Technologies
- **Contaminant Issues:**
SO₂, H₂S, NO_x, PM, Aerosols, Hg

Fuel / Process	Flue Gas ~%v.CO ₂
Natural Gas	4
Coal	12
FCC	15
Cement	21
Steel	26


Countermeasures Before Capture:

- Reduce Air In-Leakage
- Maximize Emission Controls →
- Quench and SO₂ Polishing

Reasons for Dehydration of CO₂

- Prevent Water Ice in CO₂ processed below 32°F (0°C).
- Prevent CO₂–H₂O Solid Hydrates → (Clathrates) above 32°F (0°C).
- CO₂ Corrodes Carbon Steel When Liquid Water Phase is Present.

CO₂-H₂O Hydrate Figure

Courtesy of Gas Processors Association.
GPA Research Report RR-99

Corrosion of Carbon Steel Tube Sheet in Wet CO₂, Water Condensing Service at 400 psig (28 barg).

CO₂ Dehydration Process: TEG Absorption

- Typical performance ~ 150 ppmv H₂O.
- Water Absorbed from CO₂ into TEG in Contactor.
- Heating TEG to 370°F (188°C) in Regeneration Skid Strips Water out of TEG.
- Suitable for Many Projects with only Compression Needed After Capture

Concerns:

- Glycol Carryover in Dry CO₂
- VOC/HAP Emissions in Vent Streams

Contactor

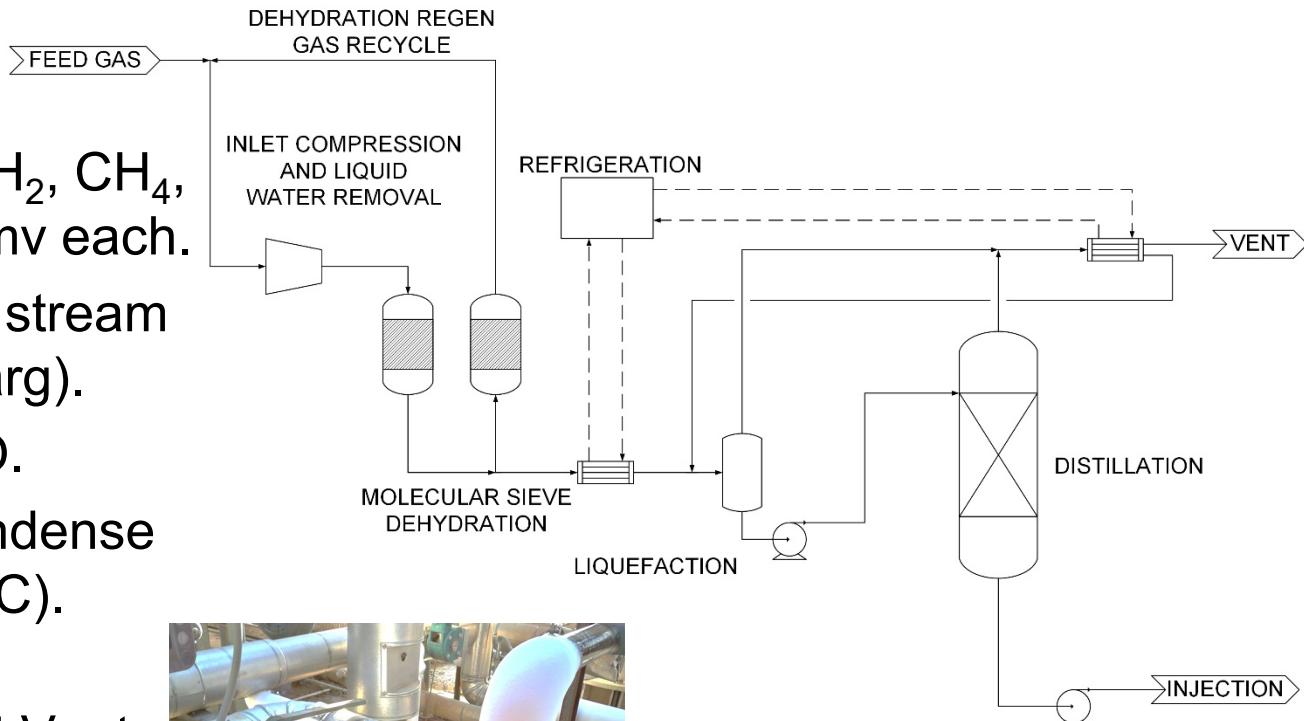
Regeneration Skid

CO₂ Dehydration Process: Mole Sieve Adsorption

- Typical performance ~1 ppmv H₂O.
- Process Gas Flows Top Down in Drying Bed Cycles.
- Heated Gas (400°F [204°C]) Flows up in Regeneration Bed Cycles.
- Capital and Operating costs ~1.5 times TEG Absorption.

Concerns:

- Media Must be Kept Free of Any Liquids (Water, Oil, etc.).
- Media Replaced ~Every 3 Years.

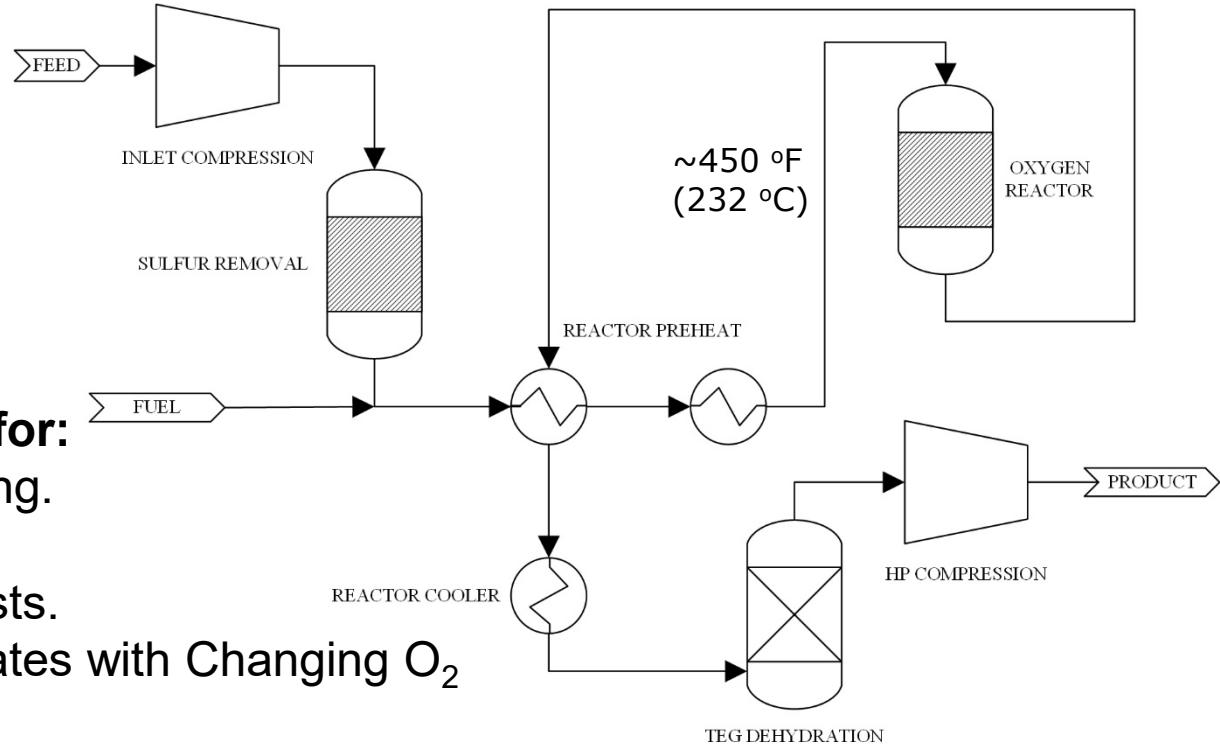


Impacts of Oxygen in CO₂

- Oxygen makes mixtures of CO₂ and water more corrosive.
(Remember the picture of the heat exchanger tube sheet on slide 6 ?!)
- Oxygen can oxidize TEG leading to faster solvent degradation.
- Oxygen can lead to biological growth in underground formations.
- Oxygen can react with H₂S under certain conditions to form elemental sulfur, sulfuric acid, and / or other sulfur compounds.

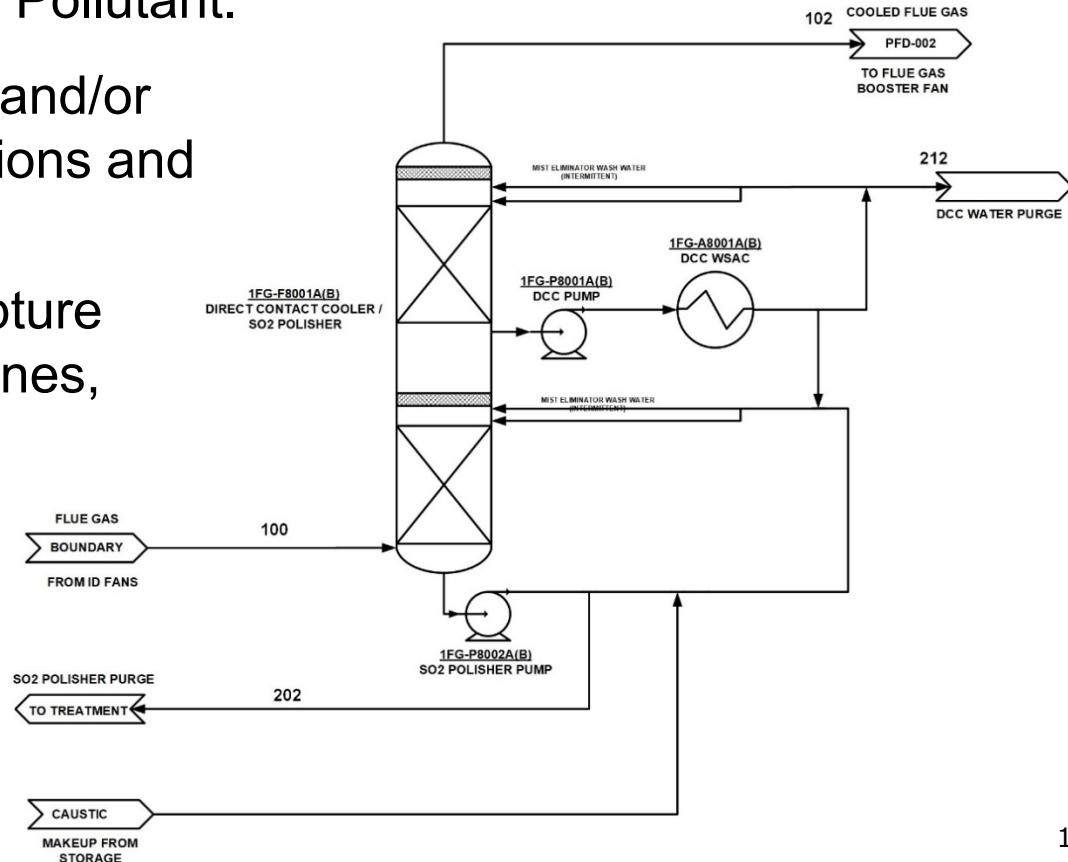
Liquefaction and Distillation of CO₂

- Removes Lighter Impurities: O₂, N₂, H₂, CH₄, CO, NO to <10 ppmv each.
- Compress CO₂ rich stream to ~ 350 psig (24 barg).
- Dry to ~1 ppmv H₂O.
- Refrigeration to Condense CO₂ at ~10°F (−12°C).
- Lower Boiling Point Compounds Go Out Vent.


Water Vapor from the Air Freezes on Pipe Before Insulation is Installed.

Emerging Option: Catalytic Reduction for Oxygen Removal from CO₂

- Proposed for meeting 10 ppmv limit in CO₂.
- Trimeric hasn't found any commercial applications.
- Demonstrated in other applications.

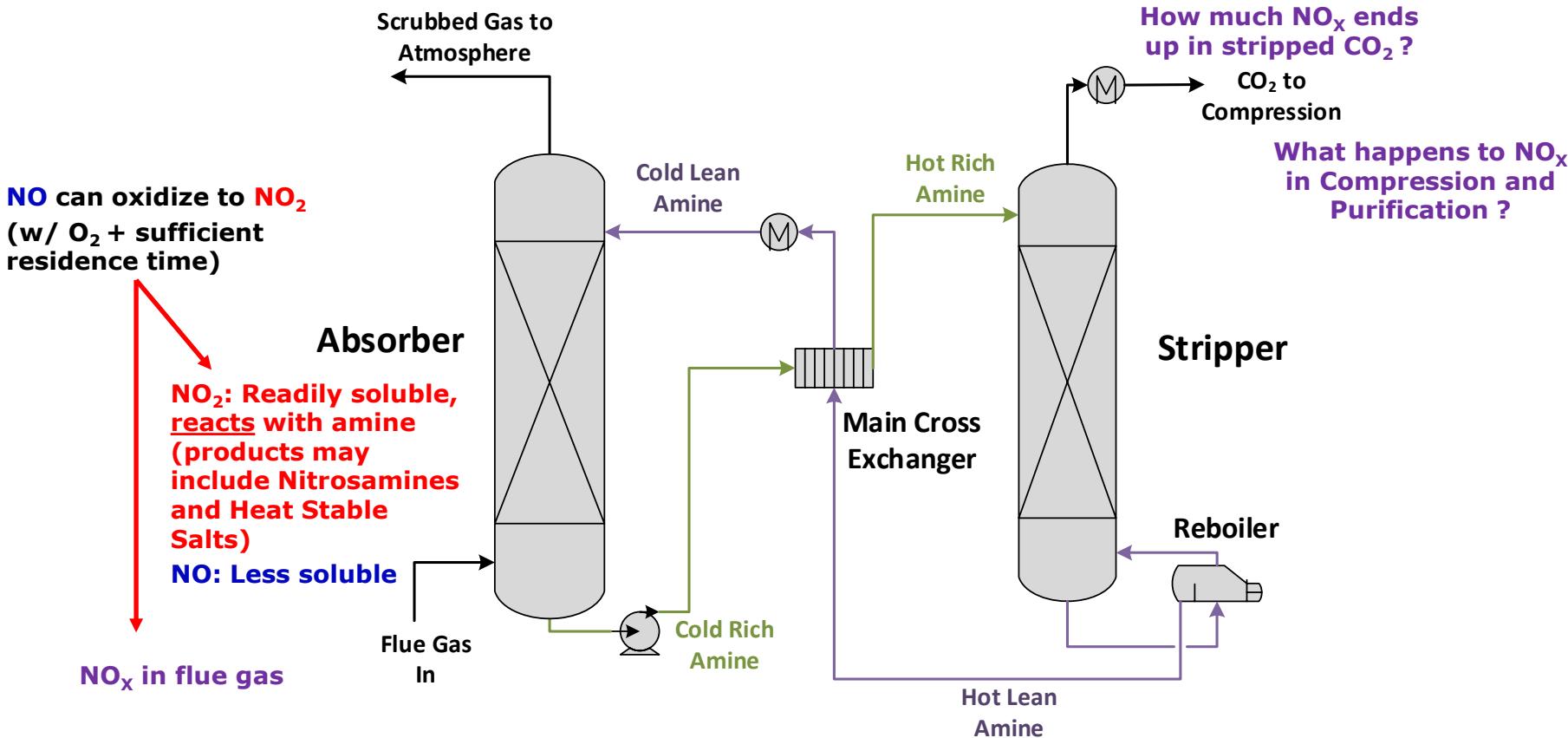

Careful Evaluation Needed for:

- Catalyst Fouling and Coking.
- Catalyst Life and Sparing.
- Catalyst Replacement Costs.
- Matching Fuel Injection Rates with Changing O₂ concentrations in Feed.
- CO ppmv in Product vs. Spec Limits.

Direct Contact Cooler / SO₂ Polisher (Caustic Scrubbing)

- SO₂ is Toxic and is a Criteria Pollutant.
- SO₂ can be Oxidized to SO₃ and/or H₂SO₄ Causing Other Emissions and Corrosion.
- At the Front End of Most Capture Processes: Amines, Membranes, Sorbents
- Downstream of FGD unit, SO₂ Polisher can get down to 1 or 2 ppmv.

H₂S Removal Options for CO₂ Conditioning


- ❑ H₂S is Toxic and Corrosive.
- ❑ Technology Selection for removal from CO₂ depends on:
 - ❑ Feed Stream: Flow Rate, Pressure, Composition.
 - ❑ Treated Gas Specification.
 - ❑ Emission Limits for H₂S and SO₂.

Scale	Sulfur Loading (approx.)		Common Treatment Options
	lb/day	tonne/day	
Small	300	0.15	Scavengers
Medium	13,000	6	Liquid Redox
Large	45,000	20	Selective Amine, Claus

NO_x – General Background

- ❑ NO_x = Nitric Oxide (NO) + Nitrogen Dioxide (NO₂).
- ❑ NO_x is a Criteria Pollutant, NO and NO₂ are Toxic and Corrosive.
- ❑ Present in Flue Gas Streams.
 - Coal-Fired Power Plant w/ SCR ~ 40 ppmv.
 - Gas-Fired Turbine Unabated ~ 100's of ppmv.
 - NO to NO₂ Ratio ~ 90 / 10.
- ❑ NO_x may Lead to Specific Corrosion Risks in CO₂ Transport.
- ❑ NO_x Must be Characterized in Detail for Each Source, Capture, and Purification Method.
 - (Example Next Slide).

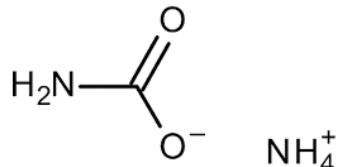
NO_x in Flue Gas Example Case

Flue Gas NO_x – Manage Before Capture

Technology	Minimum Treated NO _x Level	Challenges	Maturity
Water/Steam Injection	25 ppmv	Impact on turbine performance, high purity water needed	Commercially Proven
Dry Low NO _x (DLN) Combustor Ultra Low NO _x (ULN) Combustor	DLN: 9 - 15 ppmv ULN: 4 ppmv	Increased turbine cost/footprint, turndown challenges	Commercially Proven
Selective Catalytic Reduction (SCR)	~90% Reduction 5 ppmv	Ammonia slip, difficult to retrofit, catalyst management	Commercially Proven
NO _x Scrubbing	Limited Use in This Application	Large liquid waste stream with nitrates/other chemicals, chemical costs	Developmental

NO_x – Manage During CO₂ Purification

Technology	Description	Key Challenges	Maturity
Distillation	NO Exits in Overhead Stream and NO ₂ Exits in Bottoms Stream	Removal of both NO and NO ₂ Requires 2 Columns. Lower CO ₂ Recovery. NO in Vent Stream. Disposal of Liquid Streams Containing Nitrate Species.	NO Stripping – Proven NO ₂ Removal – Developmental
NO _x Scrubbing	Chemical scrubbing solution (e.g., peroxide, ozone, potassium permanganate) to remove NO ₂ from CO ₂	Chemical cost, disposal of liquid waste stream	Developmental


NO_x – Incidental Removal During CO₂ Purification

Process	Reported NO _x Removal*	Key Challenges
NO _x Removal in Compressor Condensate	Minimal at 10 psig (0.7 barg). ~ 60% at 216 psig (15 barg).	Limited by what dissolves in the water. NO ₂ can be converted to NO and Nitric Acid in the Condensate and NO Can Desorb Back into the Gas.
NO _x Removal in Dryer Beds	~ 15%.	NO _x ends up in Regeneration Gas (Sometimes Recycled, Sometimes Vented)
NO _x Removal in Compressor Oil	High Acid Number in Oil after 850 Hours of Operation.	Increased Oil Monitoring Requirements. Could Impact Oil Consumption and Compressor Reliability

*Reference: Final Scientific Report, DOE award number: DE-FE0013163

Other Contaminants Seen in CCUS (1 of 3)

- Corn Oil and Other Impurities in Ethanol
Plant CO₂ Can Solidify with Changes in Pressure and Temperature.
- Compressor Oil in CO₂ and Produced Water (Condensate)
- Glycol Carry Over in CO₂ from TEG Dehydration Unit.
- Free Ammonia Gas can React with CO₂ to form ammonium carbamate salts.

Ammonium Carbamate_(s)

Sulfur-containing Solid on liquid CO₂ pump impeller in Distillation Plant.

Other Contaminants Seen in CCUS (2 of 3)

- ❑ SO_2 Oxidizes to SO_3 and forms Liquid H_2SO_4 Droplets (Aerosol) in DCC.
- ❑ SO_3 can act as Nucleation Site other Aerosol Formation.
- ❑ Aerosols are Very Difficult to Remove.
- ❑ Technology Options:
 - Alkaline Sorbent Injection Upstream of PM Control Removes up to 99% of H_2SO_4 .
 - Wet ESP removes sulfuric acid and non-sulfuric acid aerosols (90% one field, 99% two fields).
 - Absorber Water Wash Design for Improved Aerosol Removal
 - Combinations of the above technologies.

Other Contaminants Seen in CCUS (3 of 3)

- ❑ Mercury (Hg) found in Coal-Fired Flue Gas is a Hazardous Air Pollutant.
- ❑ Mercury is Very Detrimental to Brazed Aluminum Used in “Cold Box” Heat Exchangers.

Removal Options

- ❑ “Co-Benefits” Removal: SCR and FGD systems reduce Hg Concentrations.
- ❑ Activated Carbon Injection upstream of PM removal device.
- ❑ Halogen addition to the coal to oxidize mercury and remove in FGD.

Team Acknowledgement

Contributors	Slide and Content Contributions
Joe Lundeen, P.E.	Dehydration
Brad Piggott, P.E.	O_2 , Liquefaction and Distillation, Catalyst Systems
Katherine Dombrowski, P.E.	SO_2 , SO_3 , H_2SO_4 , Mercury (Hg)
Carrie Beitler	H_2S
Darshan Sachde, Ph.D.	NO_x
Kevin Fisher, P.E.	Overall Review and Input

For questions, please contact Ray McKaskle:

email ray.mckaskle@trimeric.com

cell phone (512) 785-4939

www.trimeric.com